题目
(1)求函数y=f(x)-g(x)的解析式;
(2)设H(x)=f(x+
| 5 |
| 2 |
| 5 |
| 2 |
(3)求函数y=log
| 1 |
| 2 |
答案
g(4)=4b=4⇒b=1⇒g(x)=x.
∴y=f(x)-g(x)=x2-5x+4.
(2)∴H(x)=f(x+
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
=x2-
| 9 |
| 4 |
∵(-x)=(-x)2-
| 9 |
| 4 |
故H(x)是偶函数.
(3)∵x2-5x+4>0⇒x>4或x<1.
∴y=log
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 9 |
| 4 |
| 9 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |