题目

(Ⅰ)求a,b的值;
(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
答案
即

又由f(1)=﹣f(﹣1)知

所以a=2,b=1.
(Ⅱ)由(Ⅰ)知

易知f(x)在(﹣∞,+∞)上为减函数.
又因为f(x)是奇函数,
所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),
因为f(x)为减函数,
由上式可得:t2﹣2t>k﹣2t2.
即对一切t∈R有:3t2﹣2t﹣k>0,
从而判别式

所以k的取值范围是k<﹣
