题目
| 3 |
| 2 |
A.(
|
B.(-
|
C.(-8,-1) | D.(4,8) |
答案
| x3 |
| f(x) |
当x>0时,g"(x)=
| x2[3f(x)-xf′(x)] |
| f2(x) |
| x2 |
| f2(x) |
g(1)=
| 13 |
| f(1) |
| 23 |
| f(2) |
∵1<
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
所以,1<
(
| ||
f(
|
| 27 |
| 32 |
| 3 |
| 2 |
| 27 |
| 8 |
因为f(x)是奇函数,所以f(-
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 27 |
| 32 |
| 3 |
| 2 |
| 27 |
| 8 |
所以:f(-
| 3 |
| 2 |
| 27 |
| 8 |
| 27 |
| 32 |
故选B.
| 3 |
| 2 |
A.(
|
B.(-
|
C.(-8,-1) | D.(4,8) |
| x3 |
| f(x) |
| x2[3f(x)-xf′(x)] |
| f2(x) |
| x2 |
| f2(x) |
| 13 |
| f(1) |
| 23 |
| f(2) |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
(
| ||
f(
|
| 27 |
| 32 |
| 3 |
| 2 |
| 27 |
| 8 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 27 |
| 32 |
| 3 |
| 2 |
| 27 |
| 8 |
| 3 |
| 2 |
| 27 |
| 8 |
| 27 |
| 32 |