已知定义在R上的函数y=f(x)满足条件:对于任意

难度:一般 题型:解答题 来源:0119 期中题

题目

已知定义在R上的函数y=f(x)满足条件:对于任意的x,y∈R,f(x+y)=f(x)+f(y),当x>0时,f(x)<0。(1)求f(0)的值;
(2)讨论f(x)的奇偶性和单调性;
(3)当x>0时,对于f(x)总有f(1-m)+f(1-m2)<0,求m的取值范围。

答案

解:(1)取x=y=0,得

(2)取y=-x,则
,即为奇函数;
,则

所以,在R上单调递减。
(3)f(1-m)+f(1-m2)<0,
∵f(0)=0,
∴f(1-m)+f(1-m2)<f(0),
∵f(x+y)=f(x)+f(y),
∴f(1-m+1-m2)<f(0),
∵f(x)在R上单调递减,当x>0时,对于f(x)总有f(1-m)+f(1-m2)<0,
∴原不等式的解集等价于
化简,得,即-1<m<1,
∴m的取值范围是(-1,1)。

解析

闽ICP备2021017268号-8