已知当m∈R时,函数f(x)=m(x2-1)+x
                
                    难度:简单
                    题型:填空题
                    来源:不详
                    
                
             
            
                题目
                | 
已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围. | 
                答案
                (1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R. (2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0. 又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1]. ∴m=0时,a∈R;m≠0时,a∈[-1,1]. | 
                解析