设函数,其中.(1)当时,求在曲线上一点处的切线方

难度:简单 题型:解答题 来源:不详

题目

设函数,其中.
(1)当时,求在曲线上一点处的切线方程;
(2)求函数的极值点。

答案

(1)
(2)时,上有唯一的极小值点
时,有一个极大值点和一个极小值点
时, 函数上无极值点

解析


试题分析:解:(I)当 1分
,2分
在点处的切线斜率, 3分
∴所求的切线方程为: 4分
(II) 函数的定义域为.
6分
(1)当时,
即当时, 函数上无极值点; 7分
(2)当时,解得两个不同解. 8分
时,
此时上小于0,在上大于0
上有唯一的极小值点. 10分 
时,都大于0 ,上小于0 ,
此时有一个极大值点和一个极小值点. 12分
综上可知,时,上有唯一的极小值点
时,有一个极大值点和一个极小值点
时, 函数上无极值点 14分
点评:主要是考查了导数在研究函数中的应用,解决切线方程以及极值问题,属于基础题。

闽ICP备2021017268号-8